How to date the subcontinental lithospheric mantle? Methods and applications in the Carpathian-Pannonian region

László Előd Aradi

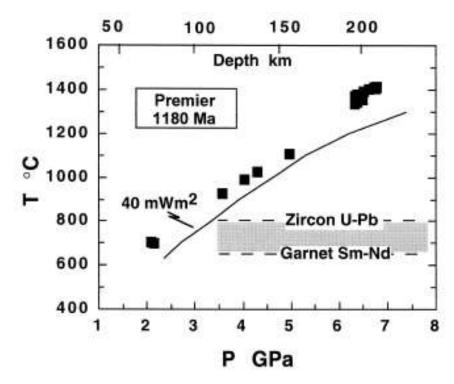
Geologist MSc. II., ELTE

Supervisor: Csaba Szabó, Ph.D.

Lithosphere Fluid Research Lab Institute of Geography and Earth Sciences Eötvös University, Budapest, Hungary

> Meeting of Young Geoscientists Balatonföldvár, 2014. 03. 28-29.

Aims of the study


- Determine the age of the subcontinental lithospheric mantle (SCLM) beneath the Carpathian-Pannonian-region (CPR)
- Reveal the connection between the formation of the crust and the lithospheric mantle
- Provide evidence of an ancient, inherited SCLM or a young, "freshly" lithospherized mantle
- Provide additional information to improve the recent geodynamical models of the CPR

Method

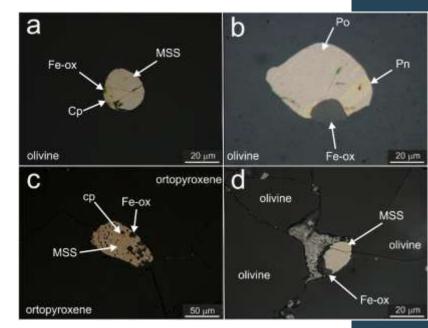
• *in-situ* LAM-ICP-MS Re-Os geochronology of sulfides in alkali basalt derived mantle xenoliths

Problems with dating continental roots, especially mantle rocks

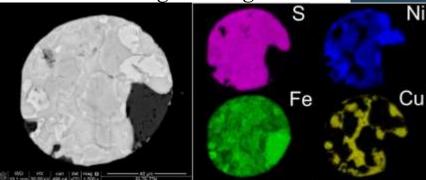
- High temperature ↔ low blocking temperatures
- Very low level of elements of interest (sub ppm)
- Absence of minerals which concentrate them (zircon, garnet)
- Long-lasting rocks, infiltrating fluids can easily disturb the isotopic systems of mantle minerals
- The usage of "classical" isotope systems (Sr-Nd-Pb) is very limited

Premier kimberlite, Kaapvaal craton

Re-Os system


- Rhenium: ¹⁸⁵Re (37,4%) and ¹⁸⁷Re (62,6%)
- $^{187}\text{Re }\beta^{-}$ \rightarrow $^{187}\text{Os}, \lambda = 1,64\text{-}1,66*10^{-11} \text{ a}^{-1}$, $T_{1/2} = 41,2*10^9 \text{ a}$
- Os is highly compatible during mantle melting (resides in solid phases), meanwhile Re is moderately incompatible (~Al)

Widely used in geology: event, chemoand chronostratigraphy, organic geochemistry, geochronology (ore deposits and igneous/mantle rocks)



Where does Os (and Re) reside in the mantle?

- 95% of the Platinum-group elements (PGE) reside in sulfide minerals and platinum-group minerals
- Sulfides are quite common in mantle xenoliths, also in the CPR
- Sulfides are mobile in the SCLM, being transported by metasomatic fluids, or being resorbed into percolating silicate melts and subsequently redeposited
- Whole-rock Re-Os ages provide a mixed age, since sulfides in mantle rocks are usually polygenetic, crystallized during different melting and melt-percolation (metasomatism) processes
- *in-situ* LAM-ICP-MS analyses of sulfides provide Re-Os ages for **unique** melting/melt percolation events

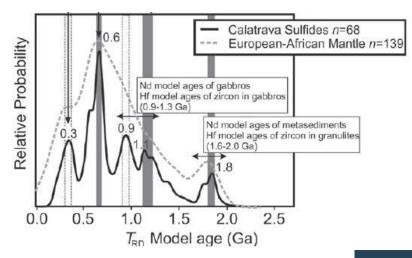
Reflected light image

Backscattered electron image

Model age calculations

- Isochron methods cannot be used
- T_{MA} , T_{RD} : time of separation from the primitive mantle, which is modelled with the Enstatite Chondritic Reservoir (ECR)

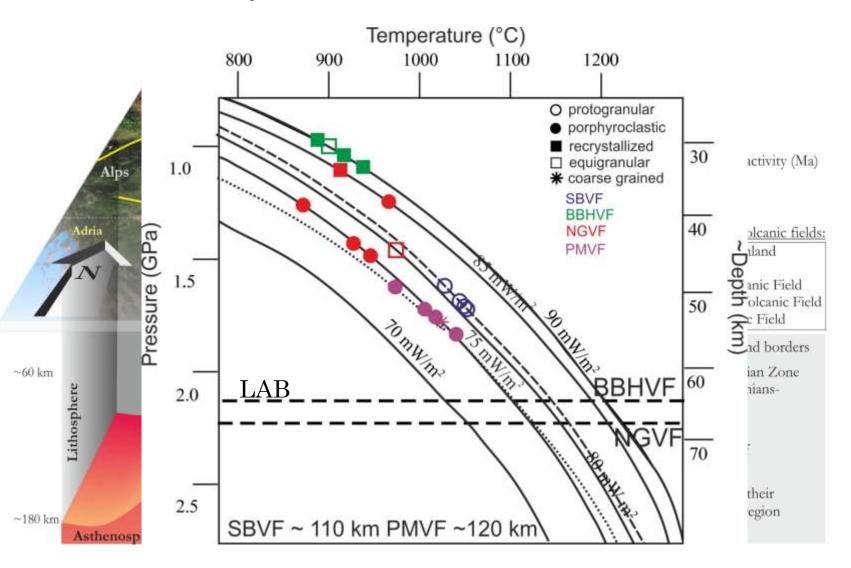
$$T_{MA} = \frac{1}{\lambda} \times ln \left\{ \left[\frac{^{187}Os/^{188}Os_{chon} - ^{187}Os/^{188}Os_{sample}}{^{187}Re/^{188}Os_{chon} - ^{187}Re/^{188}Os_{sample}} \right] + 1 \right\}$$


$$T_{RD} = \frac{1}{\lambda} \times ln \left\{ \left[\frac{187Os/^{188}Os_{chon} - ^{187}Os/^{188}Os_{sampleEA}}{187Re/^{188}Os_{chon}} \right] + 1 \right\}$$

Assuming $^{187}Re/^{188}Os_{sample}=0$ means all the Re was removed from the sample via melt depletion \rightarrow **minimum age**

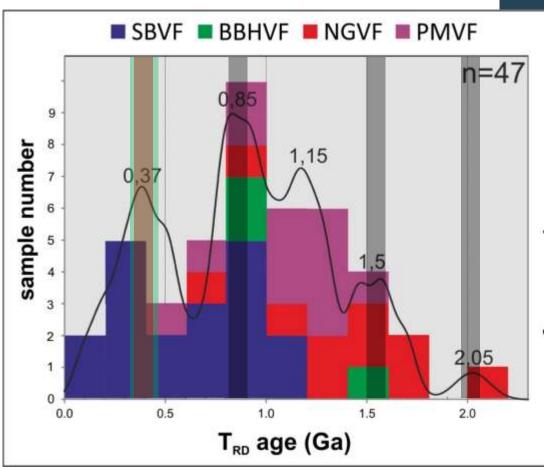
sampleEA: isotope ratio at the time of eruption

How to interpret Re-Os ages?


- Lower resolution than crustal ages (2σ<0,2 Ga considered to be precise)
- High degrees of partial melting will remove sulfur from the upper mantle, therefore it is unlikely that several stages of melting will be recorded by sulfide data in cases more than one generation of sulfides
- Different T_{RD} model ages in a single xenolith →only the oldest generation may approach the original age of lithosphere stabilisation
- Younger generations may record episodes of melt infiltration into the lithosphere.
- Melt extraction → crust formation, link between crustal and mantle ages

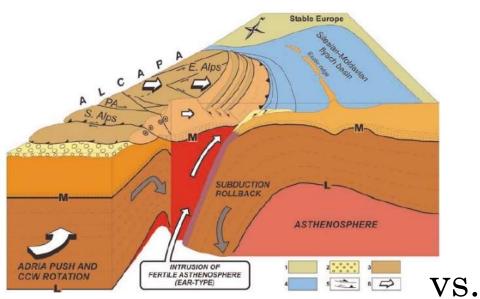
Example from the Calatrava Volcanic Field

González-Jiménez et al. (2013), Wang et al. (2013), Griffin et al. (2002)

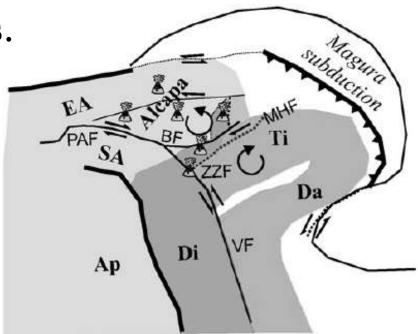

Case study from the CPR

Lenkey et al. (2002), Artemieva (2009), Lankreijker et al. (1997), Sachsenhofer et al. (1997), Horváth (1993). Szabó et al., 2010

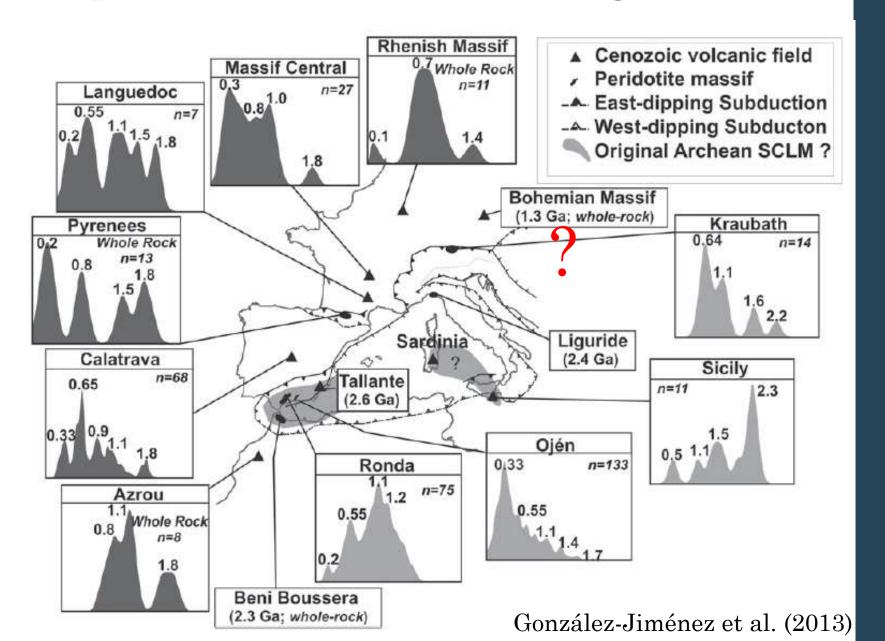
Results


- The SCLM beneath the CPR is much older than the overlying crust
- The oldest T_{RD} ages representing the age of lithospherization:
 - SBVF: 1,12 Ga
 - BBHVF: 1,48 Ga
 - NGVF: 2,05 Ga
 - PMVF: 1,44 Ga
- Regional differences: NGVF is the oldest, SBVF is the youngest
- Pulses of continental crust growth at 0,37, 0,85, 1,15 and 1,5 Ga
- Scarcity of crustal ages (lost during extension?)— the younger peaks are in agreement with lower crustal zircon ages (Hilary Downes, personal comm., 2013), but there is no information about Proterozoic crust beneath the CPR

Related geodynamic events?


Klötzli et al. (2004), Broska et al. (2013), Balintoni et al (2013)

Geodynamical consequences


Extrusion without the SCLM

Extrusion with the SCLM

Horváth et al. (2006), Kovács & Szabó (2008), Kovács et al. (2012)

Interpretations from Re-Os ages

Conclusions

- Detailed *in-situ* Re-Os dating of mantle sulfides from the Carpathian-Pannonian region
- Rhenium depletion ages revealed that the subcontinental lithospheric mantle is much older than the known crust
- We can assume that the SBVF has the youngest, and the NGVF the oldest SCLM, as old as 2,05 Ga
- These data suggest that the SCLM could not be lithospherized after the Miocene extrusion
- The CPR mantle shows ages similar to the Western Mediterranean region

Thank you for your attention!

 Acknowledgement to: Csaba Szabó, José González-Jiménez, Bill Griffin, Sue O'Reilly, Bernardo Cesare, Orlando Vasell, Norman Pearson, and all member of the Lithosphere Research Lab (LRG)

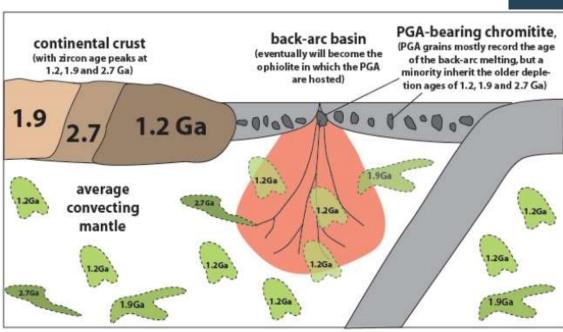
This research was funded by the Hungarian Science Foundation (OTKA, 78425 to Cs. Szabó).

Mechanisms of formation of CLM

Rapid :- plume or rapid subduction

2 Ga	3.5 Ga	2 Ga	Crust
2 Ga	3.5 Ga	2 Ga	
2 Ga	3.5 Ga	2 Ga	CLM
	3.5 Ga		

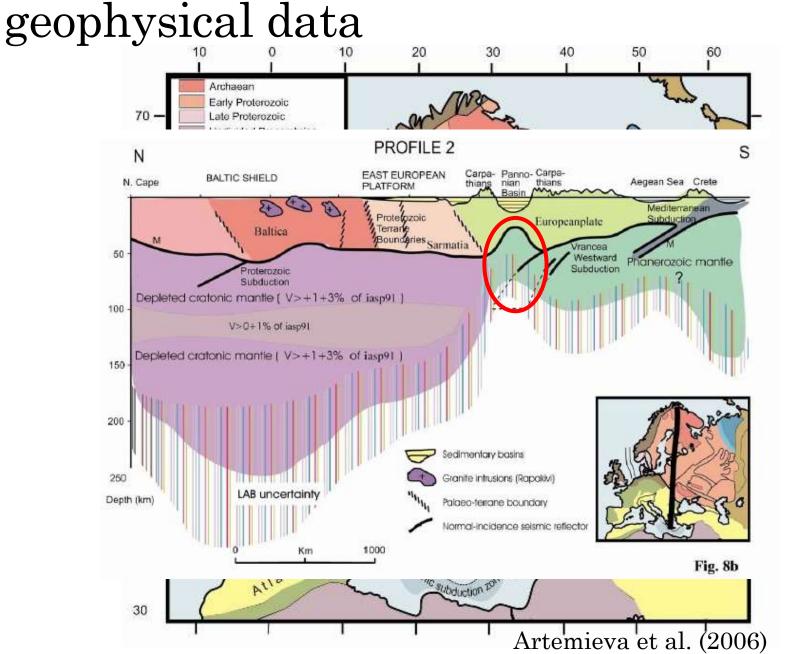
Underplating :- cooling or magmatic

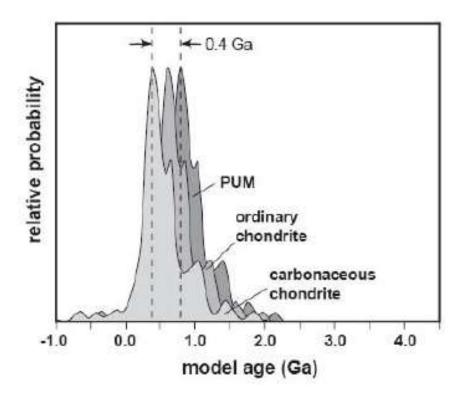

2 Ga	3.5 Ga	2 Ga	Crust
2 Ga	3.5 Ga	2 Ga	
1 Ga	2.5 Ga	1 Ga	CLM
0.5 Ga	1.5 Ga	0.5 Ga	
	0.5 Ga		

Subduction accretion

2 Ga	3.5 Ga	2 Ga	Crust
2 Ga	3.5 Ga	2.4 Ga	
1 Ga	3.3 Ga 3 Ga	1 Ga	CLM
0.5 Ga	2.0 Ga 2.4 Ga	0.5 Ga	

Lateral "block" accretion


2 Ga	2.7	3.5	3.0	2.7	2 Ga	Crust
2 Ga	2.7	3.5	3.0	2.7	2 Ga	
2 Ga	2.7	3.5	3.0	2.7	2 Ga	CLM
	2.7	3.5	3.0	2.7		



Supplementary Figure 1. Formation of PGA grains. Melting events at 1.2, 1.9 and 2.7 Ga produce highly depleted mantle domains (green areas) and significant volumes of continental crust (brown regions). Convective mixing progressively destroys these heterogeneities and so the older domains are less abundant. The depleted mantle domains have low Re/Os (parent/daughter) ratios and so produce little radiogenic ¹⁸⁷Os after the melting events, thus preserving their depletion age. Their high Os concentrations make them highly resistent to resetting by refertilization or metasomatism. A high-degree melting process (red area, here envisioned to be a back-arc basin) scavenages the Os from the mantle. The melts ascend through the mantle and deposit PGA bearing chromitites (dark grey regions) in the oceanic lithosphere (light grey regions). The PGA grains inherit the Os heterogeneity of the mantle from the melts. Most of the mantle sampled by the melting process has 'average mantle' Os isotopic composition, thus most of the PGA grains yield the age of ophiolite formation, while only a few record the earlier depletion events. PGA grains are not thought to be present in the convecting mantle, as none have been found in any abyssal peridotite sample. After the melting process ceases, the chromite bearing crust is obducted onto the continents, forming an ophiolite from which the PGA are concentrated by erosion. Note that the figure is schematic and not to scale.

Pearson (1999); Pearson et al. (2007)

SCLM in Europe, interpretations from

Supplementary Figure 13. Probability density graphs of Re-depletion model ages for the Urals PGA dataset calculated using three different mantle evolution models. PUM = Primitive Upper Mantle (Ref 26), ¹⁸⁷Os/¹⁸⁸Os = 0.1296; ¹⁸⁷Re/¹⁸⁸Os = 0.422. Ordinary chondrites (ref. 19) ¹⁸⁷Os/¹⁸⁸Os = 0.1283; ¹⁸⁷Re/¹⁸⁸Os = 0.422. Carbonaceous chondrites (Ref 19) ¹⁸⁷Os/¹⁸⁸Os = 0.1262; ¹⁸⁷Re/¹⁸⁸Os = 0.392. All internal uncertainties on model ages used to construct the probability density plots are 0.1 Gyr.