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Aims of the study

- Determine the age of the subcontinental lithospheric mantle (SCLM)
beneath the Carpathian-Pannonian-region (CPR)

- Reveal the connection between the formation of the crust and the
lithospheric mantle

- Provide evidence of an ancient, inherited SCLM or a young, ,freshly”
lithospherized mantle

- Provide additional information to improve the recent geodynamical
models of the CPR

Method

* in-situ LAM-ICP-MS Re-Os geochronology of sulfides in alkali basalt
derived mantle xenoliths
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Re-Os system

- Rhenium: 18°Re (37,4%) and 3"Re (62,6%)
- 187Re B> 1870s, A=1,64-1,66*10"1' a'l | T,,=41,2*10° a

- Os 1s highly compatible during mantle melting (resides in solid
phases), meanwhile Re 1s moderately incompatible (~Al)
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Where does Os (and Re) reside 1n
the mantle?

- 95% of the Platinum-group elements (PGE)
reside in sulfide minerals and platinum-group
minerals

- Sulfides are quite common in mantle |
xenoliths, also in the CPR olivine

- Sulfides are mobile in the SCLM, being S e
transported by metasomatic fluids, or being v
resorbed into percolating silicate melts and
subsequently redeposited olivine

olivine

- Whole-rock Re-Os ages provide a mixed age,
since sulfides in mantle rocks are usually
polygenetic, crystallized during different
melting and melt-percolation (metasomatism)
processes

- in-situ LAM-ICP-MS analyses of sulfides
provide Re-Os ages for unique melting/melt
percolation events

Backscattered electron image -



Model age calculations

- Isochron methods cannot be used

 Tya, Trp: time of separation from the grimitive mantle, which is modelled with
the Enstatite Chondritic Reservoir (ECR)
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Assuming %’Re/1%80s . .,,/=0 means all the Re was removed from
the sample via melt depletion 2> minimum age

sampleEA: isotope ratio at the time of eruption

Walker et al., 1989



How to interpret Re-Os ages?

- Lower resolution than crustal ages (20<0,2
Ga considered to be precise)

- High degrees of partial melting will remove
sulfur from the upper mantle, therefore it
1s unlikely that several stages of melting
will be recorded by sulfide data in cases ; I l:_;
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- Different Ty model ages in a single
xenolith 2> only the oldest generation
may approach the original age of
lithosphere stabilisation
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- Younger generations may record episodes T.. Model age (Ga)

of melt infiltration into the
lithosphere. Example from the Calatrava

, , Volcanic Field
- Melt extraction =2 crust formation, link

between crustal and mantle ages

Gonzalez-Jiménez et al. (2013), Wang et al. (2013), Griffin et al. (2002)



Case study from the CPR
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Results

- The SCLM beneath the CPR 1s
much older than the overlying
crust

. The oldest Typ ages
?1 esenting ‘Phe age of
lithospherization:

- SBVF: 1,12 Ga
- BBHVF: 1,48 Ga
- NGVF: 2,05 Ga
- PMVF: 1,44 Ga

- Regional differences: NGVF is
the oldest, SBVF 1is the
youngest

- Pulses of continental crust
%rgv(x;th at 0,37, 0,85, 1,15 and
, a
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Klotzli et al. (2004), Broska et al. (2013),
Balintoni et al (2013)




Geodynamical consequences
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Horvath et al. (2006), Kovacs & Szabo6 (2008), Kovacs et al. (2012)



Interpretations from Re-Os ages
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Conclusions

- Detailed in-situ Re-Os dating of mantle sulfides from the
Carpathian-Pannonian region

- Rhenium depletion ages revealed that the
subcontinental lithospheric mantle 1s much older than
the known crust

- We can assume that the SBVF has the youngest, and
the NGVF the oldest SCLM, as old as 2,05 Ga

- These data suggest that the SCLM could not be
lithospherized after the Miocene extrusion

- The CPR mantle shows ages similar to the Western
Mediterranean region
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Mechanisms of formation of CLM
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Supplementary Figure 1. Formation of PGA grains. Melting events at 1.2, 1.9 and 2.7 Ga produce highly depleted mantle
domains (green areas) and significant volumes of continental crust (brown regions). Convective mixing progressively destroys
these heterogeneities and so the older domains are less abundant. The depleted mantle domains have low Re/Os
(parent/daughter) ratios and so produce little radiogenic '%70Os after the melting events, thus preserving their depletion age.
Their high Os concentrations make them highly resistent to resetting by refertilization or metasomatism. A high-degree meidting
process (red area, here envisioned to be a back-arc basin) scavenges the Os from the mantle. The melts ascend through the
mantle and deposit PGA bearing chromitites (dark grey regions) in the oceanic lithosphere (light grey regions). The PGA grains
inherit the Os heterogeneity of the mantle from the melts. Most of the mantle sampled by the melting process has ‘average
mantle’ Os isotopic composition, thus most of the PGA grains yield the age of ophiolite formation, while only a few record the
earlier depletion events. PGA grains are not thought to be present in the convecting mantle, as none have been found in any
abyssal peridotite sample. After the melting process ceases, the chromite bearing crustis obducted onto the continents, forming
an ophiolite from which the PGA are concentrated by erosion. Note that the figure is schematic and not to scale.

Pearson (1999); Pearson et al. (2007)



SCLM 1n Europe, interpretations from
geophysical data
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Supplementary Figure 13. Probability density graphs of Re-depletion model ages for the
Urals PGA dataset calculated using three different mantle evolution models. PUM =
Primitive Upper Mantle (Ref 26), ﬁ’Os-"‘?OS = 0.1296; "'Re/®0s = 0.422. Ordinary
chondrites &}ref. 19) %058 0s = 0.1283; ®"Re/"**0s = 0.422. Carbonaceous chondrites (Ref
19) ¥0s'®0s = 0.1262: *"Re/™*0s = 0.392. All internal uncertainties on model ages used to

construct the probability density plots are 0.1 Gyr.

- Pearson et al. (2007)




